20 research outputs found

    Implicit Langevin Algorithms for Sampling From Log-concave Densities

    Full text link
    For sampling from a log-concave density, we study implicit integrators resulting from θ\theta-method discretization of the overdamped Langevin diffusion stochastic differential equation. Theoretical and algorithmic properties of the resulting sampling methods for θ∈[0,1] \theta \in [0,1] and a range of step sizes are established. Our results generalize and extend prior works in several directions. In particular, for θ≥1/2\theta\ge1/2, we prove geometric ergodicity and stability of the resulting methods for all step sizes. We show that obtaining subsequent samples amounts to solving a strongly-convex optimization problem, which is readily achievable using one of numerous existing methods. Numerical examples supporting our theoretical analysis are also presented

    Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information

    Full text link
    We consider variants of trust-region and cubic regularization methods for non-convex optimization, in which the Hessian matrix is approximated. Under mild conditions on the inexact Hessian, and using approximate solution of the corresponding sub-problems, we provide iteration complexity to achieve ϵ \epsilon -approximate second-order optimality which have shown to be tight. Our Hessian approximation conditions constitute a major relaxation over the existing ones in the literature. Consequently, we are able to show that such mild conditions allow for the construction of the approximate Hessian through various random sampling methods. In this light, we consider the canonical problem of finite-sum minimization, provide appropriate uniform and non-uniform sub-sampling strategies to construct such Hessian approximations, and obtain optimal iteration complexity for the corresponding sub-sampled trust-region and cubic regularization methods.Comment: 32 page

    Convergence of Newton-MR under Inexact Hessian Information

    Full text link
    Recently, there has been a surge of interest in designing variants of the classical Newton-CG in which the Hessian of a (strongly) convex function is replaced by suitable approximations. This is mainly motivated by large-scale finite-sum minimization problems that arise in many machine learning applications. Going beyond convexity, inexact Hessian information has also been recently considered in the context of algorithms such as trust-region or (adaptive) cubic regularization for general non-convex problems. Here, we do that for Newton-MR, which extends the application range of the classical Newton-CG beyond convexity to invex problems. Unlike the convergence analysis of Newton-CG, which relies on spectrum preserving Hessian approximations in the sense of L\"{o}wner partial order, our work here draws from matrix perturbation theory to estimate the distance between the subspaces underlying the exact and approximate Hessian matrices. Numerical experiments demonstrate a great degree of resilience to such Hessian approximations, amounting to a highly efficient algorithm in large-scale problems.Comment: 32 pages, 10 figure

    A Newton-MR algorithm with complexity guarantees for nonconvex smooth unconstrained optimization

    Full text link
    In this paper, we consider variants of Newton-MR algorithm for solving unconstrained, smooth, but non-convex optimization problems. Unlike the overwhelming majority of Newton-type methods, which rely on conjugate gradient algorithm as the primary workhorse for their respective sub-problems, Newton-MR employs minimum residual (MINRES) method. Recently, it has been established that MINRES has inherent ability to detect non-positive curvature directions as soon as they arise and certain useful monotonicity properties will be satisfied before such detection. We leverage these recent results and show that our algorithms come with desirable properties including competitive first and second-order worst-case complexities. Numerical examples demonstrate the performance of our proposed algorithms

    Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver

    Full text link
    We consider a variant of inexact Newton Method, called Newton-MR, in which the least-squares sub-problems are solved approximately using Minimum Residual method. By construction, Newton-MR can be readily applied for unconstrained optimization of a class of non-convex problems known as invex, which subsumes convexity as a sub-class. For invex optimization, instead of the classical Lipschitz continuity assumptions on gradient and Hessian, Newton-MR's global convergence can be guaranteed under a weaker notion of joint regularity of Hessian and gradient. We also obtain Newton-MR's problem-independent local convergence to the set of minima. We show that fast local/global convergence can be guaranteed under a novel inexactness condition, which, to our knowledge, is much weaker than the prior related works. Numerical results demonstrate the performance of Newton-MR as compared with several other Newton-type alternatives on a few machine learning problems.Comment: 35 page

    Non-Uniform Smoothness for Gradient Descent

    Full text link
    The analysis of gradient descent-type methods typically relies on the Lipschitz continuity of the objective gradient. This generally requires an expensive hyperparameter tuning process to appropriately calibrate a stepsize for a given problem. In this work we introduce a local first-order smoothness oracle (LFSO) which generalizes the Lipschitz continuous gradients smoothness condition and is applicable to any twice-differentiable function. We show that this oracle can encode all relevant problem information for tuning stepsizes for a suitably modified gradient descent method and give global and local convergence results. We also show that LFSOs in this modified first-order method can yield global linear convergence rates for non-strongly convex problems with extremely flat minima, and thus improve over the lower bound on rates achievable by general (accelerated) first-order methods
    corecore